Topography in Hippocampal Mossy Fiber Plasticity
نویسنده
چکیده
Neural circuits of vertebrates often display highly ordered projections between different areas, so-called topographic maps, and are characterized by their ability to undergo structural remodeling. In this issue of Neuron, Galimberti et al. demonstrate that mossy fibers of the rodent hippocampus exhibit prominent structural plasticity according to a novel topographic rule, in a process requiring the EphA4 receptor tyrosine kinase.
منابع مشابه
Assessing the role of GLUK5 and GLUK6 at hippocampal mossy fiber synapses.
It has been suggested recently that presynaptic kainate receptors (KARs) are involved in short-term and long-term synaptic plasticity at hippocampal mossy fiber synapses. Using genetic deletion and pharmacology, we here assess the role of GLU(K5) and GLU(K6) in synaptic plasticity at hippocampal mossy fiber synapses. We found that the kainate-induced facilitation was completely abolished in the...
متن کاملThe Two Sides of Hippocampal Mossy Fiber Plasticity
Two studies in this issue of Neuron (Kwon and Castillo and Rebola et al.) show that the mossy fiber-CA3 pyramidal neuron synapse, a hippocampal synapse well known for its presynaptic plasticity, exhibits a novel form of long-term potentiation of NMDAR-mediated currents, which is induced and expressed postsynaptically.
متن کاملRevisiting the role of the hippocampal mossy fiber synapse.
The mossy fiber pathway has long been considered to provide the major source of excitatory input to pyramidal cells of hippocampal area CA3. In this review we describe anatomical and physiological properties of this pathway that challenge this view. We argue that the mossy fiber pathway does not provide the main input to CA3 pyramidal cells, and that the short-term plasticity and amplitude vari...
متن کاملThe Hippocampal Mossy Fiber Synapse: Transmission, Modulation and Plasticity
Chemical synapses are key elements for the communication between nerve cells. This communication can be regulated on various time scales and through different mechanisms affecting synaptic transmission. Amongst these are slow and long-lasting adjustments by endogenous neuromodulators, instantaneous and reversible activitydependent regulation by short-term plasticity and persistent activity-depe...
متن کاملThe role of extracellular adenosine in regulating mossy fiber synaptic plasticity.
Hippocampal mossy fiber synapses show unique molecular features and dynamic range of plasticity. A recent paper proposed that the defining features of mossy fiber synaptic plasticity are caused by a local buildup of extracellular adenosine (Moore et al., 2003). In this study, we reassessed the role of ambient adenosine in regulating mossy fiber synaptic plasticity in mouse and rat hippocampal s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 65 شماره
صفحات -
تاریخ انتشار 2010